Q\AEDICARE & MEDICAID SERVICES

Clinical Quality Language (CQL) Basics
Thursday September 1, 2016
4:00 PM EDT

Jennifer Harris
Centers for Medicare & Medicaid Services

Bryn Rhodes
ESAC, Inc.

CQL Basics

Agenda

* Welcome and Background

 CQL Language Tour
= Accessing Clinical Data
= Using Queries
= Computation
» Date/Times, Intervals, and Timing Phrases
= Combining Queries
» Aggregate Computation

9/1/2016

CQL Basics

Evolving eCOM Standards

Near Term
Now

Definitions:

HQMF — Health Quality Measure Format
CQL - Clinical Quality Language

QDM — Cuality Data Model

9/1/2016

CQL Basics

Proposed Timeline For Updating
Standards

Work Effort: 2016 through Fall 2017

Measures using QDM v4.2 & HOMF 2.1
Testing CGL — QDM - HQMF 2.1

Measzure
Feﬁggmem Testing and Development
« 2016 * Measure Developers
* Implementers & “Yendors
« COL Training/Education

* Measure Authoring Tool
* Bonnie & Cypress

« Cuality Data Model

* Integration Testing

* Feedback Loops

9/1/2016

IFaII 3017 + I

Testing eCGM using CQL -

— QDM — HQMF 2.1 ’

Measure Development and Testing in
a simulated emaronment
v Starts 2017

CQL Basics

COL LANGUAGE TOUR

9/1/2016

CQL Basics

Clinical Quality Language (CQL)

* Health Level 7(HL7) standard designed to:

= Enable automated point-to-point sharing of
executable clinical knowledge

* Provide a clinically focused, author-friendly, and
human-readable language

« Currently a Draft Standard for Trial Use (DSTU)
publication

= http://www.hl7.org/implement/standards/product
brief.cim?product _1d=400

9/1/2016

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=400

CQL Basics

Accessing Clinical Data

 Clinical data models contain “statements” of
clinical data, e.g.,

9/1/2016

Patient had a routine check-up on April 31
Patient was administered an antibiotic
Patient had an appendectomy

Patient was diagnosed with Type Il Diabetes

CQL Basics

Accessing Clinical Data (cont.)

« Statements can be organized into different
types, e.qg.,

Patient had a routine check-up on April 3@ Encounter

Patient was administered an antibiotic Medication, Administered
Patient had an appendectomy Procedure, Performed
Patient was diagnosed with Type Il Diagnosis

Diabetes

9/1/2016

CQL Basics

Accessing Clinical Data (cont.)

« Within these types, different kinds of
statements can be represented with codes
from code systems.

« Within Encounter, e.g.,

Patient had a routine check-up on April 319 SNOMEDCT|185349003
Patient was admitted to the ED SNOMEDCT|4525004
Patient was admitted for elective surgery = SNOMEDCT|8715000

9/1/2016

CQL Basics

Accessing Clinical Data (cont.)

* The codes describing different kinds of
statements are then grouped with value
sets, allowing classes of specific kinds of
statements to be referenced, e.g.,

Patient had a routine check-up on April 3™ Encounter Inpatient
Patient was admitted to the ED Emergency Department Visit
Patient was admitted for elective surgery Elective Encounter

9/1/2016 10

CQL Basics

CQL Retrieve

9/1/2016

["Encounter, Performed™: “Inpatient”]

This retrieve expression results in only the highlighted encounters,
because they have codes that match the “Inpatient” value set.

B code B2 relevantperiod v
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14714:00]

3 CPT|99392 [2015-03-13T708:00, 2015-03-13708:15]

4 SNOMEDCT| 305338009

[2015-05-13T10:00, 2015-05-15T18:00]

-

11

CQL Basics

Filtering with Where

9/1/2016

["Encounter, Performed”: "Inpatient™] Encounter
where Encounter.relevantPeriod during "Measurement Period”

Introducing an alias, Encounter in this case, allows you to reference
elements of the statement for further filtering using a where clause.
The above filter results in only the highlighted rows, because they are

during the “Measurement Period” (2015 year).

id Bl code B2 relevantPeriod -
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15] |

12

CQL Basics

Relationships (with)

["Encounter, Performed”: "Inpatient"] Encounter

with ["Laboratory Test, Performed": "Streptococcus Test"] LabTest
such that LabTest.resultDateTime during Encounter.relevantPeriod

The with clause allows you to define relationships with other data
based on specific criteria.

In this case, only the October encounter is returned, because it has a
LabTest that resulted during the encounter.

id B code B2 relevantPeriod |
" 1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00)
| 2 CPT|99391 [2015-10-14714:00, 2015-10-14T14:00]
| 3 CPT|99392 {2015-03-137T08:00, 2015-03-13T08:15) 4

B2 resuit B resultDateTime
~ 11OINC|68954-7 positive 2015-10-14T14:00
. 2 -LO|NC l 6559-9 negative 2015-10-12717:00

<

9/1/2016 13

CQL Basics

Relationships (without)

["Encounter, Performed”: "Inpatient”] Encounter
without ["Laboratory Test, Performed”: "Streptococcus Test"] LabTest
such that LabTest.resultDateTime during Encounter.relevantPeriod

Statements can also be excluded based on relationships using the
without clause.

In this case, the October encounter is excluded, because it has a LabTest
that resulted during the encounter.

id B code B2 relevantPeriod -
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]
3CPT 199392 [2015-03-13708:00, 2015-03-13708:15]

B resuit B resultDateTime
1LOINC|68954-7 positive 2015-10-14T14:00 _completed |
2 LOINC|6559-9 negative 2015-10-12T17:00 completed

4

9/1/2016 14

CQL Basics

Shaping Results with Return

["Encounter, Performed”: "Inpatient"™] Encounter
return { relevantPeriod: Encounter.relevantPeriod }

You can return only a subset of the elements in a statement using the
return clause.
In this case, only the relevantPeriod element is returned.

id ﬂ code ﬂ relevantPeriod M
1 CPT|99392 [2014-12-13T13:00, 2014-12-13713:00]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14714:00]
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15]

9/1/2016 15

CQL Basics

Ordering Results with Sort

["Encounter, Performed”: "Inpatient”] Encounter
sort by start of relevantPeriod

You can order the results using the sort clause.
In this case, the result is sorted by the start of the relevantPeriod
element, ascending.

id n code n relevantPeriod -
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00]
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

9/1/2016 16

CQL Basics

Naming Expressions

define "Sorted Encounters":

["Encounter, Performed”: "Inpatient™] Encounter
sort by start of relevantPeriod

You can name any expression so that it can be reused in subsequent
expressions using the define declaration.

In this case, the result of “Sorted Encounters” is now the same as the
result of the defined expression.

id n code n relevantPeriod -
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00]
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

9/1/2016

CQL Basics

Picking Items from Results

First("Sorted Encounters™)

id = code = relevantPeriod -
1 CPT|99392 [2014-12-13713:00, 2014-12-13T713:00]
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

Last("Sorted Encounters")

id u code = relevantPeriod -
1 CPT|99392 [2014-12-13T13:00, 2014-12-13713:00]
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15]
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

9/1/2016

The results of retrieves
and queries are lists, so
you can pick items based
on order using First() and
Last().

Because “Sorted
Encounters” is ordered by
the start of the
relevantPeriod, First()
returns the oldest
encounter, while Last()
returns the most recent.

18

CQL Basics

Picking Items (cont.)

You can also use the
"Sorted Encounters”[8] indexer ([]) to pick out any
item by its index in the list.

id = code = relevantPeriod - .
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00] Indexes.ln C_QL are.O-based,
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15] | SO the first item is index 0,
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00] the second item is index 1,

and so on.

"Sorted Encounters™[1
= Note that whenever you're

performing operations that

id & code B2 relevantPeriod ~| rely on the order of
1 CPT|99392 [2014-12-13T13:00, 2014-12-13T13:00] elements in the |ist’ be sure
3 CPT|99392 [2015-03-13T08:00, 2015-03-13T08:15] to use a sort clause to get
2 CPT|99391 [2015-10-14T14:00, 2015-10-14T14:00]

the appropriate ordering.

9/1/2016 19

CQL Basics

Strings

CQL supports strings using single-quotes (').

You can escape characters (such as single-
guotes, tabs, carriage returns, and line feeds,

*John Doe using standard escape characters.

"John O\ 'Mally"’

(S e CQL supports string comparison for all the
‘Deer’ < '"Doe’

comparison operators (=, !=, <=, >=, <, and >).

String comparison is case-sensitive, and
based on the Unicode value of each
character.

9/1/2016 20

CQL Basics

(%] L L

(5]

9/1/2016

Numbers and Calculation

CQL supports Integers (whole numbers), and Decimals.

In calculations and comparisons, integers are implicitly
converted to decimals when necessary.

Comparison of decimals ignores precision.
CQL uses standard mathematical operator precedence.
Use parentheses to force precedence.

Division in CQL always returns a decimal, use div to
perform integer division.

The mod operator returns the remainder of an integer
division.

21

CQL Basics

Rounding and Exponents

5.5)

5.5

Truncate
=

Round (
Round (» 1)
.5)
5.

(% DY o

LM

(
Truncate(-)
Floor({5.5)
Floor(-5.5)
Ceiling(5.5)

Ceiling(-5.5)

9/1/2016

CQL supports standard rounding, 0.5 and above rounds
up, 0.4 and below rounds down. The second argument, if
supplied, specifies the precision of the result.

Truncate() returns the integer component of a decimal.

Floor() returns the greatest integer less than a decimal.
Ceiling() returns the least integer greater than a decimal.

CQL supports exponents and roots
with 2,

Logarithms to a given base use Log().

Natural logarithms use Ln() and Exp().

22

CQL Basics

Quantities

Quantities in CQL are a number followed by a
UCUM unit.

CQL supports arithmetic and comparison
operators for quantities.

25 'mg . .
o - Implementations are required to respect
1k CML . . .
S units, but not necessarily conversions
16 "cn” * 18 “om’ between units.

Arithmetic operators, in particular, must
return quantities with appropriate units, but
not necessarily converted.

An implementation may throw a run-time
error for an unsupported unit conversion
operation.

9/1/2016 23

CQL Basics

@2014-81-25
@2014-81-25
@T12:80:00
@T14:30:14
@2014
@2014-01
@T14
@T14:30

DateTime and Time

CQL supports dateTime, a point-in-time on the
Western calendar, specified with integers for year,
month, day, hour, minute, second, and millisecond,
plus a timezone.

CQL also supports Time, a point-in-time in a 24-hour
period, specified with integers for hour, minute,
second, and millisecond, plus timezone.

Both dateTime and Time support partial values, but
only for trailing precisions (i.e., if you specify a day,
you must also specify a year and month.

If not supplied, timezone is assumed based on the
evaluation context.

24

CQL Basics

DateTime and Time (cont.)

DateTime(2814, 7, 5)

Time(14, 3@)

date from @20614-81-25T14:
time from @20614-81-25T14:
year from @2814-81-25

Mow()

i
Today()

TimeQfDay()

9/1/2016

CQL also supports construction of dateTime
and Time values as expressions.

You can use date from to extract the date
(with no time components) from a dateTime
value.

You can use time from to extract the time
from a dateTime value.

You can use the name of a component to
extract it from a dateTime or Time value.

Now(), Today(), and TimeOfDay() return the
dateTime, Date, and Time, respectively, of
the evaluation context.

25

CQL Basics

Date Comparison

You can compare dateTime and
Time values using the standard

@2e14-01-15 = @2014-82-15 comparison operators: =, !=, <=,

@2014-01-15 < @2014-82-15 >= < and >.

@2014-01-15 <= [2014-82-15

@2014-81-15 same year as [@2014-82-15 o

@2012-81-15 same year or before §2014-82-15 You can also perform precision-

@2012-01-15 before year of @2014-82-15 based comparisons using same
as, before/after of, and same or
before/after.

9/1/2016

26

CQL Basics

Date Arithmetic

1 day
2 years CQL supports time-valued quantities with the name (singular or
38 minutes plural) of the precision as the unit.
2 'a’ UCUM units can also be used (with quotes).
38 "'min’
Durations can then be added to
or subtracted from dateTime
Today() - 1 year and Time values, with the

@20614-82-81T14:38 + 38 minutes

@2014 + 24 months

9/1/2016

expected semantics for
durations with variable days
such as years and months.

27

CQL Basics

9/1/2016

Computing Duration and Difference

duration in months between @2814-81-31 and @2814-82-

%]

1

The duration in..between operator determines the number of whole
periods between two dateTime or Time values.

This expression returns 0 because there are no whole months between the
two dates.

difference in months between @2814-81-31 and @2814-82-81

The difference in..between operator determines the number of boundaries
crossed between two dateTime and Time values.

This expression returns 1 because 1 month boundary was crossed between
the two dates.

28

CQL Basics

Intervals

CQL supports Intervals for

Interval[3, 5)
Interval[3.@, 5.8) numbers and date/time
Interval[§2014-01-01T00:00:00.09, @2015-01-01T60:00:00.0] values.

Intervals use standard mathematical notation to indicate open and closed (i.e.,
whether the endpoint is included in (closed) or excluded from (open) the
interval).

You can test for membership with contains and in,
and you can determine the boundaries of an
interval using start of and end of.

Interval[3, 5) contains 4
A 9 wy 173 A
4 in Interval[3, 5)

start of Interval[3
end of Intervall3,

>) You can determine the width of an interval using
) width of.

W =

width of Interval[3, 5)

29

9/1/2016

CQL Basics

9/1/2016

Comparing Intervals

hefore

meets before

overlaps before

includes

starts

zame az (=)

ends

included in {during)

overlaps after

meets after

after

31

CQL Basics

Timing Phrases

CQL also supports timing phrases that make it easier to express precise
relationships between intervals using natural language.

The before and after operators can have a prefix of starts or ends, and a suffix of
start or end. For example,

IntervalX starts before start Intervaly

* . 4
* . 4
* . 4

9/1/2016 32

CQL Basics

Timing Phrases (cont.)

The before and after operators can also take an offset that indicates how far
away a given relationship should be.

This offset can be absolute, indicating that the boundary of the interval must be
on the offset, or it can be relative, indicating that the boundary must be at least
on the offset.

IntervalX starts 3 days before start Intervaly
IntervalX starts 3 days or more before start IntervalY

-
- ¢ >

- starts 3 days or more before
starts 3 days before {* ¢ *
- ¢ >

€ * ¢

9/1/2016 33

CQL Basics

Timing Phrases (cont.)

You can also specify a range for the boundary relationship using the within..of
operator.

IntervalX starts within 3 days of start IntervalyY

% $ > . 4
—
% $ > . 4
starts within 3 days of < o > g
% ¢ > . 4
| - — >
€ . > *

9/1/2016 34

CQL Basics

List Operations

You can test for membership of items in a list using the contains and in operators.

You can compare lists using equality (=), and the includes and included in
operators.

1
2 2 X contains 3
3 3 3 in X
4 4 X includes ¥
¥ included in X

5 -

T
X

9/1/2016 35

CQL Basics

Union

The union operator combines two lists, eliminating duplicates.

%]

i

%]

X unicn ¥

L]
(=]

L]

L]
LE]

NOTE: In the current specification (CQL 1.1), union does not eliminate duplicates, so a distinct must
be used. However, this is a DSTU comment to change this behavior to support the more intuitive
duplicate elimination semantics.

36

9/1/2016

CQL Basics

Intersect

The intersect operator results in a list containing only the elements that appear
in both lists.

1 4
2 5

4
3 7] X interaect Y

5
1 -
5 8

9/1/2016

37

CQL Basics

Except

The except operator results in a list containing only the elements of the first list
that are not present in the second list.

%)
o
==

B X eXcept ¥

%)

o il L
1
L

9/1/2016

38

9/1/2016

Questions?

39

CQL Basics

Resources

 HL7 Cross-Paradigm Specification: Clinical Quality
Language, Release 1 DSTU1.1

= http://www.hl7.org/implement/standards/product brief.cfm?
product 1d=400

« HL7 CDS Workgroup Project Homepage
= http://wiki.hl7.org/index.php?title=Clinical Quality Langua
ge
« GitHub Tools Repository
= https://github.com/caframework/clinical quality language

« CQL JIRA site

= https://oncprojectracking.healthit.gov/support/browse/COLI
=

9/1/2016

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=400
http://wiki.hl7.org/index.php?title=Clinical_Quality_Language
https://github.com/cqframework/clinical_quality_language
https://oncprojectracking.healthit.gov/support/browse/CQLIT

CQL Basics

eCQIl Resource Center

 eCQIl Resource Center

= https://ecqi.healthit.gov
 CQL Space

= https://ecqi.healthit.gov/cql

9/1/2016

41

https://ecqi.healthit.gov/
https://ecqi.healthit.gov/cql

CQL Basics

 eCQI Resource Center [T X

C' @ https://ecqi.healthit.gov

uick access, place your b rks here on the b ks bar. Import bookmarks now... (O] Other bookmarks

-lg{e]} Resource Center

The one-stop shop for the most current resources to support Electronic Clinical Quality Improvement.

e

The Office of the National Coordinator for -
. Heatth Information Technology

S

About FAQ Glossary of eCQI Terms eCQl Resource Center Contact Information

Spaces W Q + | Llogin

Measures EP Mea en eCQM Tools Educatt

The one-stop ShOp for the most current Learn about eCQI resources and connect with the community of

professionals who are dedicated to clinical quality improvement

resources to support Electronic Clinical Al

Quality Improvement.
Getting Started eCQMs Education
A gentle introduction to The who, what, when, where, and A selection of educational
understanding eCQl and this why of eCQMs “ materials and resources to
Resource Center broaden your eCQl knowledge
Latest News Upcoming Events
Tue 03 May NLM released VSAC update version 2.10.11 on April 20, 2016 May QDM User Group Webinar
UPDATED: Code System Versions 18 NOTE: Participants are not required to register for this
RxNorm 2016-02, 2016-03, 2016-04 2016 Meeting.
US Edition of SNOMED CT 2016-03
See all VSAC-hosted code system versions in the VSAC Support Center. Select the JOIN WEBEX MEETING
Help button on any VSAC page and go to Code Systems and Tools https://esacinc2.webex.com/esacinc2/j.php?
NEW: VSAC Authoring and VSAC Collaboration Support for CMS eCQM Value MTID=m9a94b76ealeb76fbd1ad9c3d66eb3b60

Set Annual Update .
Meeting number: 733 101 720
VSAC Authoring: The Centers for Medicare and Medicaid Services (CMS) Clinical

Quality Measure (eCQM) value sets are... Read more Meeting password: gdm1

Tue 03 May Soliciting Example Electronic Clinical Quality Measures for Upcoming
Cooking with CQL Webinar Sessions JRIBYREENE

CMS and ESAC, Inc. are looking for examples of electronic clinical quality measure +1-415-655-0002 US Toll

9/1/2016 CMMS 42

CQL Basics

' @ CQL| eCQl Resource Cent X W\

«

c https://ecqi.healthit.gov/cql

For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

w @ =

(] Other bookmarks

ﬂv

Topicareas EH Measures

-lqe]} Resource Center

eCQl Standards w QL

EP Measures

The one-stop shop for the most current resources to support Electronic Clinical Quality Improvement.

A4

cQL HQMF QDM QRDA Kaizen

eCQM Tools Education

About FAQ

Glossary of eCQI Terms

“\ &
The Office of the National Coordinator for -
Heaith Information Technology

eCQl Resource Center Contact Information

Q|w Login

9/1/2016

CQL

Clinical Quality Language (CQL) is an HL7 draft standard for trial use (DSTU). It is part of the effort to harmonize standards between

electronic clinical quality measures (eCQMs) and clinical decision support (CDS). CQL provides the ability to express logic that is
human readable yet structured enough for processing a query electronically. In the future, CQL is to be used in all of the clinical
quality measure HQMF electronic specifications. It will replace the logic expressions currently defined in the Quality Data Model

(QDM) and QDM (v5.0) will include only the method for defining the data elements (the data model). More information about CQL is

found at:

® HL7 Standard: Clinical Quality Language Specification, Release 1 DSTU
® HL7 CDS Workgroup Project Homepage
* GitHub Tools Repository

CQL is discussed in the HL7 CQF-on-FHIR forum and CQL STU comments are discussed during the HL7 Clinical Decision Support
Work Group calls.
CQL Formatting and Usage Wiki

This wiki serves as a collaborative workspace for the development of CQL formatting conventions and usage patterns for the
representation of logic within quality measures. All users have edit rights to be able to submit edits, add comments and concerns.
Items on the Wiki are a work in progress and subject to change.

https://github.com/esacinc/CQL-Formatting-and-Usage-Wiki/wiki

Comments or Questions?
For issues, comments, and questions related to CQL, please use the CQL JIRA Issue Tracker.

https://jira.oncprojectracking.org/browse/CQLIT

CQL Events
For upcoming CQL Events, click the CQL Events link on the right navigation bar.

CQL Resources

For past CQL presentations, click the CQL Educational Resources link on the right navigation bar.

Request space membership

CQL Events
CQL Educational Resources

Searchable Terms

eCQl Topic:
About eCQM
Standards

eCQl Author:
CMSs

eCQI Function:

eCQM Development -
Concept=>=>Specification
eCQM Implementation

eCQl User Level:
Beginner
Intermediate

eCQl User Type:
Health IT
Developer/Vendor

CENTERS FOR MEDICARE & MEDICAID SERVICES

43

